anjitacademy@gmail.com

CBSE

Some Basic Concept of Chemistry

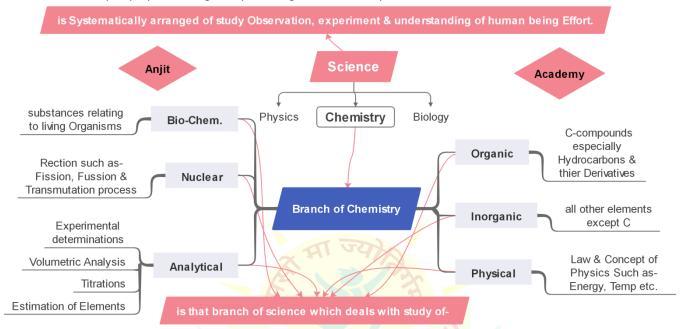
For Class 11th

Super Short Tricky Chemistry By Er. Jitendra Gupta Sir

Conceptual Notes for NEET/JEE/Boards

Table of Contents:

- Introduction
 - Importance of Chemistry
 - 2. Atom & Molecules
 - 3. Properties of Matter and Their Measurement
 - 4. Physical & Chemical Classification of Matter
 - 5. Differences between Compounds and Mixtures
 - 6. Differences between Mass and Weight
- Valency of Cation & Anion: Inorganic Naming Tricks
- Units of Measurement
 - **Dimensional Analysis**
 - Some Important Conversion
 - Atomicity and Precision & Accuracy
- The International System of Units (SI)
 - 1. Retention of Significant Figures Rounding off Figures
 - Scientific Notation
 - Significant Figures
- Laws of Chemical Combinations
 - 1. Law of Conservation of Mass
 - 2. Law of Definite Proportions 'or' Law of Constant Composition
 - Law of Multiple Proportions
 - Law of Reciprocal proportion 4.
 - 5. Gay Lussac's Law of Gaseous Volumes
 - 6. Avogadro Law
- **Dalton's Atomic Theory**
- Mole Concept
 - 1. Mole: Atomic Mass, Molecular Mass & Formula Mass
 - Difference b/w Molecular mass & Molar Mass
- Concentration of Solutions


 - Molarity & Normality equation mission Of Givilization Relation b/w formality & Molarity
 - Percentage Composition
- Empirical Formula & Molecular Formula
 - Analytical Chemistry: % determination of element on Organic Compound
- Some Experimental Methods
 - Stoichiometry and Stoichiometric Calculations
 - 3. Dulong Pettit's law
 - 4. Law of Isomorphism
 - Diffusion Method
 - 6. Iodometry and iodimetry
 - Equivalent mass OR Chemical Equivalent
 - Percentage yield
- Limiting Reagent
- POAC: Power of Atom Conservation
- Equivalence Method
- Sharp your Brain
- Solved Example
- Practice Paper for NEET/JEE
- Introduction: Chemistry is the branch of science that deals with the composition, structure & properties of the matter under different condition of temperature & pressure.
- Importance of Chemistry: Chemistry has a direct impact on our life & has wide range of applications in diff. fields.

1. In Agriculture and Food:

- (i) It has provided chemical fertilizers such as urea, calcium phosphate, sodium nitrate, ammonium phosphate etc.
- (ii) It has helped to protect the crops from insects & harmful bacteria, by the use of certain effective insecticides & pesticides.
- (iii) The use of preservatives has helped to preserve food products like jam, butter, squashes etc. for longer periods.

2. In Health and Sanitation:

- (i) It has provided mankind with a large number of life-saving drugs. Today, dysentery and pneumonia are curable due to discovery of sulpha drugs and penicillin life-saving drugs. **Cisplatin** and **Taxol** have been found to be very effective for cancer therapy and **AZT** (Azidothymidine) is used for AIDS victims.
- (ii) Disinfectants such as phenol are used to kill the micro-organisms present in drains, toilet, floors etc.
- **3. Application in Industry:** Chemistry has played an important role in developing many industrially manufactured fertilizers, alkalis, acids, salts, dyes, polymers, drugs, soaps, detergents, metal alloys.

> Properties of Matter and Their Measurement-

S.N	Physical Change	Chemical Change	
1.	No new substance is formed.	A new substance is formed.	
2.	Properties of constituent elements/substance is retained.	Properties of constituent elements/substance changes.	
3.	Change does not involve loss or gain of heat.	Loss or gain of heat may be involved in this reaction.	
4.	This change is generally reversible.	This change is generally irreversible.	
5.	For Example - Change of ice into water (melting).	For Example - Burning of coke $C + O_2 \rightarrow CO_2$	

■ Physical Classification of Matter:

- 1 Hy 31	Flysical classification of Matter:				
S.No	Properties	Solid	Liquid	Gas	
1.	volume	Definite	Definite	Indefinite	
2.	Shape	Definite	Indefinite	Indefinite	
3.	I.M.F of attraction	Very high	Moderate	Negligible/Very low	
4.	Arrangement of molecules	Orderly arranged	Free to move within the volume	Free to move every where	
5.	Inter molecular space	Very small	Slightly greater	Very great	
6.	Compressibility	Not compressible	Not compressible	Highly compressible	
7.	Expansion on heating	Very little	Very little	Highly expand	
8.	Rigidity	Very rigid	Not rigid known as fluid	Not rigid & known as fluid	
9.	Fluidity	Can't flow	Can flow	Can flow	
10.	Diffusion	They can diffuse	Can diffuse And rate of diffusion	Can diffuse & rate of	
		due to K.E of liq./gases	is very fast	diffusion is very fast	

■ Chemical Classification of matter :

Elements: An element is the simplest form of matter that cannot be split into simpler substances or built from simpler substances by any ordinary chemical or physical method. There are 118 elements known to us.

Compounds: A compound is a pure substance made up of two or more elements combined in a definite proportion by mass. Compounds are broadly classified into **inorganic** and **organic** compounds.

- Inorganic compounds are those, which are obtained from non-living sources such as minerals. For example, common salt, marble and limestone.
- Organic compounds are those, which occur in living sources such as plants and animals. They all contain carbon.

Note: "All Compounds are molecules, But Not all molecules are compounds." Ex.- Molecular hydrogen (H₂) & molecular Oxygen (O₂) are not compound b/coz each is composed of single element, But H₂O is compound.

➤ Differences between Compounds and Mixtures :

Compounds	Mixtures
1. In which, two or more elements are combined chemically.	1. In which, simply mixed and not combined chemically.
2. The elements are present in the fixed ratio by mass. This ratio cannot change.	2. Constituents are not present in fixed ratio. It can vary
3. Compounds are always homogeneous i.e., they have the same composition throughout.	3. It may be either homogeneous or heterogeneous in nature.
4. Its constituents cannot be separated by physical methods	4. its Constituents can be separated by physical methods.
5. The constituents lose their identities .	5. The constituents do not lose their identities .

■ Mass and Weight:

Properties	Mass	Weight
1. meaning	Quantity of matter, contained in body.	Force applied on object due to the pull of gravity.
		$W = F_{external} = mg$
2. unit	Kg & Scalar	Newton (1N = 1 Kgm/s ²) & Vector
3. Physical quantity	It remain same in any Location & Time.	Depend on location

Walancy of Cation & Anion:

(a)) Cations :

VALANCY – 1		
Ammonium	NH ₄ ⁺	
Sodium	Na ⁺	
Potassium	K ⁺	
Rubidium	Rb ⁺	
Cesium	Cs ⁺	
Silver	Ag ⁺	
Copper	Cu+	
(Cuprous)	Cu	
Gold		
(Aurous)	Au ⁺	

on: (a)	cations:		
VALANCY – 2			
Magnesium	Mg ²⁺		
Calcium	Ca ²⁺		
Stroncium	Sr ²⁺		
Barium	Ba ²⁺		
Zinc	Zn ²⁺		
Cadmium	Cd ²⁺		
Nickel	Ni ²⁺		
Copper (Cupric)	Cu ²⁺		
Mercury (Mercurio	Hg ²⁺		
Lead (Plumbus)	Pb ²⁺		
Tin (Stannous)	Sn ²⁺		
Iron (Ferrous)	Fe ²⁺		

VALANCY – 3		
Iron	Fe ³⁺	
(Ferric)	Fe ³ .	
Aluminium	Al ³⁺	
Chromium	Cr ³⁺	
Gold	. 3+	
(Auric)	Au ³⁺	

Inorganic Naming
Higher O.S Anjit
-ate -ic -i
NO₃ Nitrate NO_2 SO₄ Sulphate SO_3 Phosphate
CuO Cupric Oxide Cu_2O H₂SO₄ Sulphuric acid Cu_2O

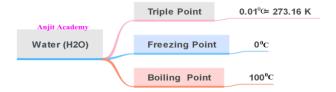
Lower O.S

-ite | $\overline{\text{ous}}$ NO_2^- Nitrite SO_3^{2-} Sulphite HPO_3^{2-} Phosphite Cu_2O Cuprous Oxide H_2SO_3 Sulphurous acid

(b) Anions:

VALANCY – 1		
Hydroxide	OH-	
Nitrate	NO ₃ -	
Nitrite	NO ₂ -	
Permanganate	MnO ₄	
Bisulphite	HSO ₃ -	
Bisulphate	HSO ₄ -	
Bicarbonate (Hydrogen carbonate)	HCO ₃ -	
Dihydrogen phosphate	H ₂ PO ₄ -	
Perchlorate	ClO ₄ -	
Chlorate	ClO ₃ -	
Chlorite	ClO ₂ ⁻	
Hypochlorite	CIO ⁻	
Iodate	103	
Meta aluminate	AlO ₂ -	
Meta borate	BO ₂ -	
Cyanide	CN ⁻ [: C≡N:] ⁻	
Isocyanide	NC ⁻ [¬N = C •]	
Cyanate	CNO ⁻ [;Ö–C≡N]:	
Isocyanate	[O=C=N ⁻]	
Thiocyanate	SCN ⁻	
Formate	HCOO-	

VALANCY – 2		
Carbonate	co ₃ 2-	
Sulphate	so ₄ 2-	
Sulphite ing For	so ₃ ²⁻	
Sulphide Of Civiliza	tiors2-	
Thiosulphate	S ₂ O ₃ ²⁻	
Tetrathionate	s ₄ o ₆ ²⁻	
Oxalate	c ₂ o ₄ ²⁻	
Silicate	sio ₃ 2-	
Hydrogen phosphate	HPO ₄ ²⁻	
Manganate	MnO ₄ ²⁻	
Chromate	CrO ₄ ²⁻	
Dichromate	Cr ₂ O ₇ ²⁻	
Zincate	ZnO ₂ ²⁻	
Stannate	SnO ₃ ²⁻	
Hexaflurosilicate (or silicofluorides)	SiF ₆ ²⁻	
Tartrates	C ₄ H ₄ O ₆ ²⁻	
Phosphite	HPO ₃ ²⁻	
Chromate	CrO ₄ ²⁻	
Pyroborate	B ₄ O ₇ ²⁻	


VALANCY – 3		
Hexacyano		
ferrate (III) or	[Fe(CN) ₆] ³⁻	
Ferricynide		
Phosphate	PO ₄ 3-	
Borate	BO3 ³⁻	
(orthoborate)	ьоз-	
Arsenate	AsO ₄ ³⁻	
Arsenite	AsO ₃ ³⁻	
Nitride	N ³⁻	
Phosphide	P ³⁻	

VALANCY – 4			
Pyrophosphate	P ₂ O ₇ ⁴⁻		
Hexacyano			
ferrate(II) or	[Fe(CN) ₆] ^{4–}		
Ferrocyanide			

Units of Measurement: Fundamental Units: The quantities mass, length and time are called fundamental quantities and their units are known as fundamental units. There are seven basic units of measurement for the quantities:

➤ Dimensional Analysis:

- **1. Volume :** Volume has the units of (length)³. So Volume has units of m^3 or cm^3 or dm^3 . A common unit, litre (L) is not an SI unit, is used for measurement of volume of liquids. $1 L = 1000 \text{ mL} = 1000 \text{ cm}^3 = 10^3 \text{ cc} = 1 \text{ dm}^3$
- 2. Density: Density of a substance is its amount of mass per unit volume. SI unit of density = SI unit of mass/SI unit of volume = kg/m^3 or $kg m^{-3}$ This unit is quite large and a chemist often expresses density in $g cm^{-3}$.
- **3. Temperature:** There are three common scales to measure temperature °C (degree Celsius), °F (degree Fahrenheit) & K (kelvin). Here, K is the SI unit. $K = ^{\circ}C + 273.15$ & °F = 9/5 x °C + 32
- Note—Temp. below 0 °C (i.e. negative values) are possible in Celsius scale but in Kelvin scale, negative temp. is not possible.
- **4. Pressure :** 1 atm = $1.013 \times 10^5 \text{ N/m}^2$ or Pascal's = 760 mm Hg = 76 cm Hg = 760 torr [1 bar = 10^5 Pascal's]
- **5. Triple Point : Three phase** of matter (S,L,G) co-exit at the same point is called Triple point.

> Some Important Conversion :

- 1. 1 Cal. = $4.184 \text{ J} = 4.18 \times 10^7 \text{ erg}$
- **2.** 1 inch = 2.54 cm = 25.4 mm
- 3. $1 \text{ cm} = 10 \text{ mm} = 10^{-2} \text{ m}$
- **4.** $1 \text{ N} = 10^5 \text{ dyne}$
- **5.** $1 \text{ J} = 10^7 \text{ erg}$
- **6.** $1 \text{ ev} = 1.6 \times 10^{-19} \text{ C}$
- 7. 1esu = $3.33 \times 10^{-10} \text{ C}$
- 8. 1 Pm = 10^{-12} m = 10^{-10} cm
- **9.** $1 \text{ A}^0 = 10^{-10} \text{ m} = 10^{-8} \text{ cm} = 0.1 \text{nm}$
- **10.** $C = 3 \times 10 8 \text{ m/sec}$
- **11.** h = 6.626×10^{-34} J-sec = 6.626×10^{-27} erg-sec
- **12.** F = 96,500 C
- **13.** $N_A = 6.023 \times 10^{23} / \text{mol}$
- **14.** 1 amu = $1.66 \times 10^{-27} \text{ Kg}$
- **15.** charge of $e^- = 1.6 \times 10^{-19} \text{ C}$ = 4.8 x 10⁻¹⁰ esu

R 0.082 L-atm/K-mol 1/12 2 Cal/K-mol Anjit Standard Measurments: Set by IUPAC as-

(i) STP: Standard Temp & Pr.

$$T = 0^{\circ}C$$
, $P = 1$ bar, $V = 22.4$ L

- (ii) NTP : Normal Temp & Pr
 - $T = 20^{\circ}$ C, P = 1 atm, V = 24.05 L
- (iii) SATP : Standard Ambient Temp & Pr. $T = 25^{\circ}C$, P = 1 atm, V = 24.46 L

where, V = Vol. of 1 mole gas : 1 atm = 1.013 bar

➤ Useful relation :

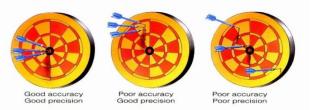
- **2.** In $X = 2.303 \log_{10} X$
- **3.** 1 L-atm = 24.21 Cal. = 101.32 J
- **4.** 1' = 12"
- 5. $\pi = 3.141$
- **6.** e = 2.71
- **7.** V(STP) = 22.4 L

$$log(a/b) = log a - log b$$

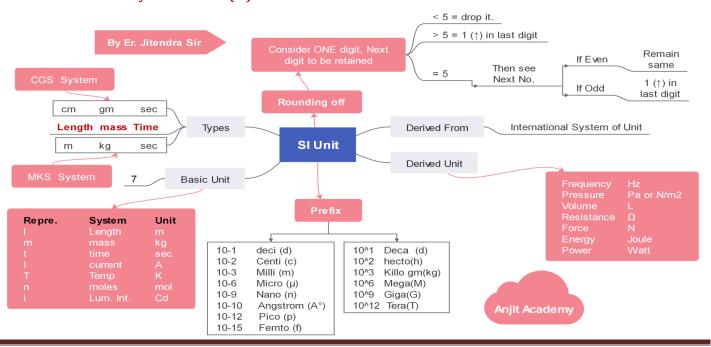
 $log(a \times b) = log a + log b$

$$\log_{10}10^{x} = x$$

$$\log_{10}(x^n) = n \log_{10} x$$


$$log_{10}(1/a) = -log_{10}a$$

 $ln \rightarrow natural logaritham base e$


Atomicity: is the no. of gaseous atoms of an element present in ONE molecule. Ex.- He \rightarrow 1 H₂ \rightarrow 2 O₃ \rightarrow 3 But, S₆ & I₂ \rightarrow 0 b/coz it is exit in solid form.

> Precision & Accuracy:

Precision refers to the closeness of various measurements for the same quantity while **accuracy** refers to the agreement of a particular value to the true value of the result.

The International System of Units (SI):

➤ Retention of Significant Figures - Rounding off Figures :

The rounding off procedure is applied to retain the required number of significant figures.

Example - 4.317 is rounded off to 4.32 ; 4.312 is rounded off to 4.31 8.375 is rounded off to 8.38 ; 8.365 is rounded off to 8.36

■ Scientific Notation :

Numbers are represented in $N \times 10^n$ form. Where, N = Digit term n = exponent having positive or negative value.

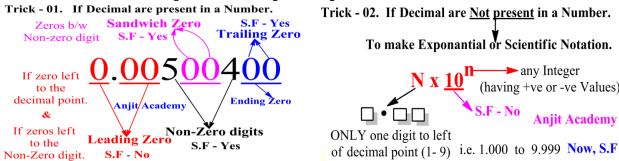
Examples- $12540000 = 1.254 \times 10^7$ & $0.00456 = 4.56 \times 10^{-3}$

Mathematical Operations of Scientific Notation:

Multiplication and Division: Example: $(7.0 \times 10^3) \times (8.0 \times 10^{-7}) = (7.0 \times 8.0) \times (10^{[3 + (-7)]}) = 56.0 \times 10^{-4}$

 $(7.0 \times 10^{3}) / (8.0 \times 10^{-7}) = (7.0/8.0) \times (10^{[3 - (-7)]}) = 0.875 \times 10^{10} = 0.9 \times 10^{10}$

any Integer


(having +ve or -ve Values)

Addition and Subtraction: Example- (5×10^3) + (8×10^5) = (5×10^3) + (800×10^3) = $(5 + 800) \times 10^3$ = 805×10^3

Significant Figures: Total no. of digit in a number including last digit whose value is uncertain is called significant figures.

Ex.- dia. of measurement $d = 56 \pm 0.001$ cm

There are certain rules for determining the number of significant figures. These are -

Trick - 03. Counting no. (fixed) = S.F $\rightarrow \infty$ Ex.- 1 dozen = 12 or Kg = 1000g or π = 3.14 all have S.F $\rightarrow \infty$

Note: The decimal point does not count towards the number of significant figures.

Example- the number 345601 has six significant figures but can be written in different ways, as 345.601 or 0.345601 or 3.45601 all having same number of significant figures.

■Addition & Subtraction of Significant Figures:

In addition or subtraction of the numbers having different precisions, the final result should be reported to the same number of decimal places as in the term having the least number of decimal places. For example: 3.52 + 2.3 + 6.24 = **12.06** The final result has two decimal places but the answer has to be reported only up to one decimal place, i.e. the ans would be 12.0

Subtraction of numbers can be done in the same way as the addition. for Example- 23.4730 - 12.11 = 11.3630

The final result has four decimal places. But it has to be reported only up to two decimal places, i.e., the answer would be 11.36

■Multiplication & Division of Significant Figures :

In the multiplication or division, the final result should be reported upto the same number of significant figures as present in the least precise number.

According to the rule the final result = 0.024 Multiplication of Numbers : $2.2120 \times 0.011 = 0.024332$;

Division of Numbers: $4.2211 \div 3.76 = 1.12263$; The correct answer = 1.12

Laws of Chemical Combinations :

The combination of elements to form compounds is governed by the following basic laws-

1. Law of Conservation of Mass: Given by Antoine Lavoisier in 1789.

It states that matter (mass) can neither be created nor destroyed. In other words,

In all physical and chemical changes, the total mass of the reactants is equal to that of the products.

The following experiments illustrate the truth of this law -

(a) When matter undergoes a physical change -Ice → Water

It is found that there is no change in weight though a physical change has taken place.

(b) When matter undergoes a chemical change -

For example, decomposition of Calcium Carbonate
$$CaCO_3$$
 $\stackrel{\Delta}{\rightarrow}$ CaO + CO_2 $40+12+48=100g$ $40+16=56g$ $12+32=44g$

During the above decomposition reaction, matter is neither gained nor lost.

Limitation: In nuclear reactions, some mass of reactant is converted into energy, so mass of reactant is always less than that of product.

Ex.- 1.7 gram of silver nitrate dissolved in 100 gram of water is taken. 0.585 gram of sodium chloride dissolved in 100 gram of water is added to it and chemical reaction occurs. 1.435 gm of AgCl and 0.85 gm NaNO₃ are formed. Show that these results illustrate the law of conservation of mass.

Sol. Total mass before chemical change = mass of AgNO₃ + Mass of NaCl + Mass of water = 1.70 + 0.585 + 200 = 202.285 gram Total mass after the chemical reaction = mass of AgCl + Mass of NaNO₃ + Mass of water = 1.435 + 0.85 + 200 = 202.285 gram Thus, in the given reaction Total mass of reactants =Total mass of the products.

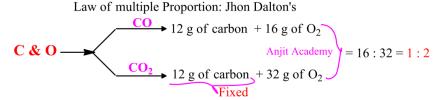
2. Law of Definite Proportions 'or' Law of Constant Proportion: Proposed by Louis Proust in 1799. which states that - A chemical compound is always contains fixed proportion of element by their weight.

For example, Water may be formed in a number of ways i.e., distilled water / River Water / Ice \rightarrow H₂O = 2 : 16 = 1: 8 (fixed)

Limitations: In case of isotopes, ratio is not fixed

Ex.-
$$12_{CO_2} = 12:32 = 3:8$$
 & $14_{CO_2} = 14:32 = 7:16$

Q. Irrespective of the source, pure sample of water always yields 88.89% mass of oxygen and 11.11% mass of hydrogen. This is explained by the law of:


(a.) conservation of mass (b.) constant composition (c.) multiple proportion (d.) constant volume

As in water $\frac{\text{Hydrogen}}{\text{Oxygen}} = \frac{2}{16} \Rightarrow \text{H: O} = 1:8 \text{ by mass}$ So oxygen = $\frac{8}{8+1} \times 100 = 88.89\%$ Hydrogen = $\frac{1}{8+1} \times 100 = 11.11\%$

Both value always constant. Obey law of constant composition. Hence, (B) is correct.

3. Law of Multiple Proportions: Proposed by Dalton in 1803.

This law states that - When two elements combine together to form two or more chemical compounds, then the one element is fixed by mass of the other, bear a simple ratio to one another.

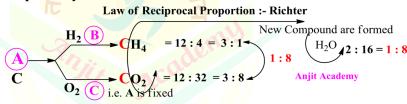
Limitations:

The law is not applicable, If element Exist in Isotopes. for Ex.- formation of HCl, Cl-isotopes combine Cl35 1:35 & Cl37 1:37 in HCl

Example- Two compounds each containing only		Mass% of Tin	Mass % of oxygen
tin and oxygen had the following composition. Show that these data illustrate the law of multiple proportion?	Compound A	78.77	21.23
	Compound B	88.12	11.88

Sol. In compound A: 21.23 parts of oxygen combine with 78.77 parts of tin.

 \therefore 1 part of oxygen combine with 21.23 / 78.77 = 3.7 parts of Sn.


In compound B: 11.88 parts of oxygen combine with 88.12 parts of tin.

∴ 1 part of oxygen combined with 11.88/88.12 = 7.4 parts of tin.

Thus, the mass of Tin in compound A and B which combine with a fixed mass of oxygen are in the ratio 3.7:7.4 or 1:2. This is a simple ratio. Hence the data illustrate the law of multiple proportion.

4*** Law of Reciprocal proportion: Proposed by Richter 1794.

If an element 'A' combined together with Two different element 'B' & 'C' to form two different compound in which element 'A' is fixed to others; when 'B' & 'C' combined together to form a new compound.

Ex.- One part of an element A combines with two parts of B (another element). Six parts of element C combine with four parts of element B. If A and C combines together, the ratio of their masses will be governed by:

(a) law of definite proportions (b) law of multiple proportions (c) law of reciprocal proportions (d) law of conservation of mass

Solution: $\frac{B}{A} = \frac{2}{1}$; $\frac{B}{C} = \frac{4}{6} = \frac{2}{3}$ from this when A combined with C the ratio is A/C = 1/3 Hence, (C) is correct.

5. Gay Lussac's Law of Gaseous Volumes: Given by Gay Lussac in 1808. Zation

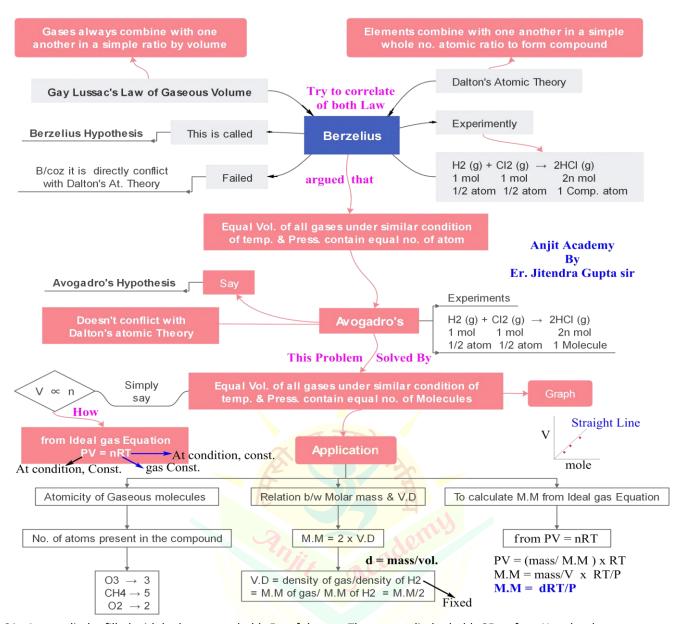
He developed Vol.-Vol. relations of gaseous equation. According to this law - "Volume of gases always combined with one another in a simple in a ratio by volume in a particular temperature and pressure".

The law may be illustrated by the following examples - Combination between hydrogen and chlorine:

e.g.
$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$

 $1V \quad 1V \quad 2V$ All reactants and products have simple ratio $1:1:2$

Ex-01. Ammonia is oxidized according to the following equation : $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$


How many litres of nitric oxide are formed when 90 litres of oxygen reacts with ammonia?

Ans. By Gay-Lussac's Law:
$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$$

 $4 \text{ vols} \quad 5 \text{ vols} \quad 4 \text{ vols}$
 $4/5 \text{ vols} \quad 1 \text{ vol} \quad 4/5 \text{ vols}$
 $4/5 \times 90 \text{ lt} \quad 90 \text{ lt} \quad 4/5 \times 90 \text{ lt}$
 $= 72 \text{ lt} \quad = 90 \text{ lt} \quad = 72 \text{ lt} \quad \therefore \text{ The volume of nitric oxide formed at STP} = 72 \text{ Lt}$

02. What volume of propane is burnt for every 100 cm3 of oxygen used in the reaction? $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$ The volumes of gases are measured at room temperature and pressure.

Ans. By Gay-Lussac's law:
$$C_3H_8$$
 + $5O_2 \rightarrow 3CO_2 + 4H_2O$
1 vol 5 vols 3 vols (div. by 5)
1/5 vol 1 vol
1/5 × 100 cm3 100 cm3
= 20 cm3 = 100 cm3 \therefore The volume of propane burnt = 20 cm3.

6. Avogadro Law: In 1811, Given by Avogadro. According to this law - Equal volumes of gases at the similar condition of temperature and pressure contain equal number of molecules.

Ex-01. A gas cylinder filled with hydrogen gas holds 5 g of the gas. The same cylinder holds 85 g of gas X under the same temperature and pressure. Calculate: (i) vapour density of gas X (ii) molecular weight of gas X.

Ans. (i) Vapour density of gas $X = \frac{wt \text{ of } gas X}{wt \text{ of the same volume of hydrogen}} = \frac{85}{5} = 17$ (ii) Molecular weight of gas $X = 2 \times V.D = 2 \times 17 = 34$ amu.

Dalton's Atomic Theory: based on the Law of Conservation of mass.

In 1808, Dalton published 'A New System of Chemical Philosophy' in which he proposed the following:

S.N	Main point of this Theory	Drawback's of this theory - It could not explain -	Modified Dalton's Atomic Theory
1.	Atom is made up of small individual particles.	Gay Lussac's law of gaseous volumes.	The element having same atomic no. but diff. mass no. (Isotope)
2.	Atom of same element to form shape, size & orientation.	Why ? different element to form different shape & size.	The element having same mass no. but diff. atomic no. (Isobar)
3.	Atom of different element to form diff. shape, size & orientation.	What is the force b/w atom & molecules in three states of matter ? S, L, G	Ratio of atom is fixed & integral, but may not be simple. e.g. In sugar molecules $C_6H_{22}O_{11}$, the ratio of C, H and O atoms is 12:22:11 which is not simple.
4.	Atom is always in whole no. ratio.		Atom is the smallest unit which takes part in chemical reactions.
5.	Atom can neither be created nor be destroyed.		Atom is no longer indivisible.

Mole Concept:***

1. Atomic Mass: Atomic mass of an element is defined as the average relative mass of an atom of an element as compared to the mass of an atom of carbon -12 taken as 12.

NOTE: You Know: $A \approx 2$

H = 1	S = 32	Ca = 40	K = 39	N = 14

C = 12	P = 31	Ar = 40	Ag = 108	Na = 23
O = 16	Cl = 35.5	Mg = 24	Cu = 63.5	AI = 27

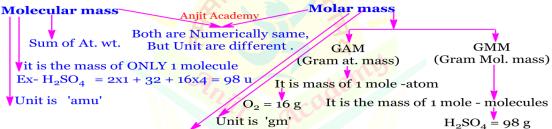
u (**Unified mass**) OR **amu** (atomic mass unit): One atomic mass unit (amu) is equal to I/12th of the mass of an atom of carbon-12 isotope.

1 amu = $\frac{1}{12} \times \frac{12 \text{ g}}{\text{NA}}$ = 1/N_A = Reciprocal of Avogadro's no. = $\frac{1}{6.023 \times 10^{23}}$ = 1.67 x 10⁻²⁴ g = mass of proton = 1.67 x 10⁻²⁷ kg

■ Gram Atomic Mass: Atomic mass of an element expressed in grams is the gram atomic mass or gram atom.

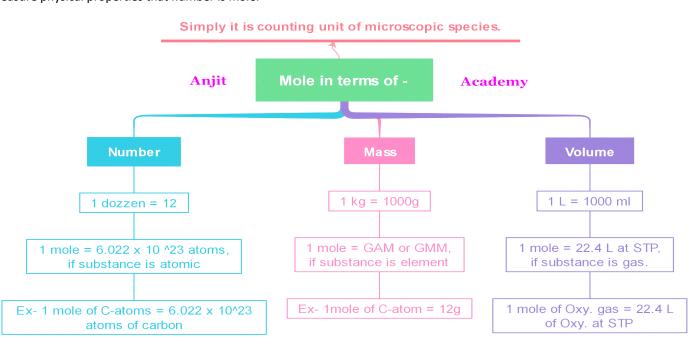
For example, the atomic mass of oxygen = 16 amu; Therefore gram atomic mass of oxygen = 16 g

- Average Atomic Mass: Most of the elements exist as isotopes; it may be defined as the average relative mass of an atom of an element as compared to the mass of carbon atoms (C-12) taken as 12.
- **2. Molecular Mass:** Molecular mass of a substance is defined as the average relative mass of its molecule as compared to the mass of an atom of C-12 taken as 12.


It is obtained by multiplying the atomic mass of each element by number of its atoms and adding them together.

For example, Molecular mass of methane (CH₄) = 12.011 u + 4 (1.008 u) = 16.043 u

- Gram Molecular Mass: Molecular mass of a substance expressed in grams is called gram molecular mass.
- e.g., the molecular mass of oxygen = 32 amu ; Therefore, gram molecular mass of oxygen = 32 g
- 3. Formula Mass: Sum of atomic masses of the elements present in one formula unit of a compound. It is used for the ionic compounds. Thus, formula mass of such as NaCl, KNO_3 , Na_2CO_3 etc. Ex- NaCl = 23.0 u + 35.5 u = 58.5 u.



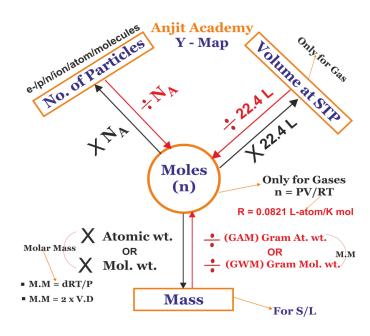
Difference b/w Molecular mass & Molar Mass:

The mass of 1 mole of substance in grams.

- **4. Mole:** Mole is defined as the amount of a substance, which contains the same number of chemical units (atoms, molecules, ions or electrons) as there are atoms in exactly 12 grams of pure carbon-12.
- A mole represents a collection of 6.022 x10²³ (Avogadro's number) chemical units.. **The mass of one mole of a substance in grams is called its molar mass.**
- Mole can be defined in three ways- We cannot measured of very small species entity like e-/atom/molecules. So, need to measure physical properties that number is mole.

Note:

We can use the following relationship as per requirement of question.


No. of mole =
$$\frac{No. \text{ of particle}}{N_A}$$

= $\frac{mass (gm)}{[gm \text{ at. or mol. mass}]}$
= $\frac{V(\textbf{l}) \text{ occupied by a Gas at STP}}{22.7}$
 $V(\textbf{l}) \text{ occupied by a Gas at 1atm and 273K}$
= $\frac{22.4}{22.4}$

Ex.- How many carbon atoms are present in 0.35 mol of $C_6H_{12}O_6$ -

Sol. 1 mol of $C_6H_{12}O_6$ has = 6 N_A atoms of C \therefore 0.35 mol of C₆H₁₂O₆ has = 6 × 0.35 N_A atoms of C $= 2.1 \text{ N}_{A} \text{ atoms} = 2.1 \times 6.022 \times 10^{23} = 1.26 \times 10^{24}$ carbon atoms

Q. Total no. of valance electron in 4.2 g of N₃ ion

Total no. of **valance e-** =
$$\left(\frac{4.2}{42} \times N_A\right) \times 16$$

Total no. of **e-** = $\left(\frac{4.2}{42} \times N_A\right) \times 22$

Concentration of Solutions (solute + solvent = Solution): The concentration (amount of solute dissolve in per litre of soln) of a solution can be expressed in any of the following ways-

- **1. Strength (g/L)**: strength = $\frac{mass\ of\ solute\ in\ (g)}{Vol.of\ solution\ in\ L}$
- 2. Percentage (%): of compound is the relative mass of each of the constituents element in 100 parts of it.

Mass by Mass percent (w/w %) =
$$\frac{Mass \ of \ Solute \ in \ gm}{Total \ mass \ of \ Solution} \times 100$$

amount of solute in g present in 100 g of solution.

Mass by Vol. percentage(w/V %) =
$$\frac{Mass\ of\ Solute\ in\ gm}{Total\ Volume\ of\ Solution\ in\ ml} \times 100$$

Volume by Volume percent (V/V %) = $\frac{Volume\ of\ Solute\ in\ ml}{Total\ volume\ of\ Solution\ in\ ml} \times 100$

volume of the solute per 100 units of the volume of solution.

- NOTE: When V/V % → Vol. of Solution (Let always V= 100ml)
- 3. Mole fraction: Temp. Independent.

It is the ratio of number of moles of a particular component to the total number of moles of the solution.

For a solution containing n_2 moles of the **solute** dissolved in n_1 moles of the **solvent**,

$$n_2 = \frac{n^2}{n^2 + n^2}$$
 & $n_1 = \frac{n^1}{n^1 + n^2}$ from both equation, $n_1 + n_2 = 1$
Hence, Sum of mole fraction is always equal to unity.

4. Parts per million (ppm): The amount of solute in gram per million (10⁶) gram of the solution.

$$ppm = \frac{mass\ of\ solute}{mass\ of\ solution} \times 10^6$$
 used in measure Atmospheric Pollution .

- $ppm = \frac{mass\ of\ solute}{mass\ of\ solution} \times 10^6$ 5. Parts per billion (ppb) : ppb = $\frac{mass\ of\ solute}{mass\ of\ solution} \times 10^9$
- **6. Molarity (M)** \rightarrow (mol/L): It is defined as the number of moles of solute in 1 litre of the solution.

Measurements in Molarity can change with the change in temperature because solutions expand or contract accordingly; i.e Temp. dependent.

$$\mathbf{M} = \frac{\text{no.of moles of solute}}{Volume \ of \ solution \ (L)} = \frac{n}{V(L)} = \frac{wt.of \ solute \times 1000}{mol.wt.of \ solute \times V(ml) of \ solution} = \frac{d\left(\frac{g}{ml}\right) of \ solution \times 1000}{Mol.wt. \ of \ solute \times mass \ of \ solution \ (g)} = \frac{\text{Strength } (g/L)}{Mol.mass \ (g/mol)}$$

➤ Note:

Molar solution \rightarrow **1M** i.e. Molarity is 1. | Semi molar \rightarrow M/2 | Deci molar \rightarrow M/10 | Centi molar \rightarrow M/100

7. Molality (m) \rightarrow (mol/kg): It is defined as the number of moles of solute present in 1 kg of solvent.

It is Temp. independent.
$$m = \frac{\text{no.of moles of solute}}{\text{mass of soolvent in } kg} = \frac{\text{mass of solute}(g) \times 1000}{\text{mol.mass of solute}(g) \times \text{mass of Solvent}(g)}$$

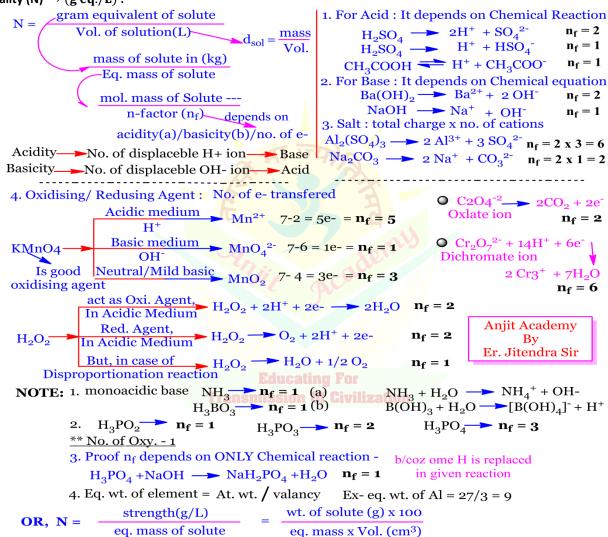
- **9. Formality (f):** formality is use similar to Molarity; Use in case of ionic compound.
- "no. of <u>for</u>moles of solute in per litre vol. of solution." $f = \frac{mass\ of\ solute}{formula\ mass\ of\ solute\ \times V(L)} = \frac{w}{M\ obs.\ \times V(L)}$

M_{obs.} → Observed Molecular mass or Experimentally Observed M.M (Used in Von't Hoff Factor - i)

➤ Relation b/w formality & Molarity:

```
\frac{f}{M} = \frac{\textit{M.M (Thero.)}}{\textit{M.M (Obs.)}} = i \implies \textit{f} = \textit{M} \times \textit{i} \qquad \because \quad \textit{M} = \frac{\textit{wt}}{\textit{M.M (Thero.)} \times \textit{V(L)}} \quad \textit{Formula mass of NaCl} = 58.5
```

Molarity & Normality equation: To calculate the Molarity of mixing two solution of same substance after Dilution.


The following equation is used: $M_1 \times V_1 = M_2 \times V_2$ where M_1 = initial molarity, M_2 = molarity of the new solution, V_1 = initial volume and V_2 = volume of the new solution. Similarly, Normality equation: $N_1 \times V_1 = N_2 \times V_2$ If Vol. V_1 of Soltion of Molarity M_1 is mixed with Volume V_2 of another Non-reacting Solution of molarity M_2 , Then Molarity M_3 of mixed Solution.

Ex.01. 12.5 ml of a solution containing 6 g of a dibasic acid in 1L was found to be neutralized by 10 ml of a decinormal solution of NaOH. The molecular mass of the acid is-

Sol. N₁ x V₁ (acid) = N₂ x V₂ (base)
$$\Rightarrow N_1 \times 12.5 = \frac{1}{10} \times 10 \Rightarrow N_1 = \frac{1}{12.5}$$

 \therefore Sytrength = $N \times eq. Mass \Rightarrow \frac{mass}{V(L)} = N \times eq. mass \Rightarrow \frac{6}{1} = \frac{1}{12.5} \times E \Rightarrow E = 75$

Hence, Molar mass = eq. mass x n_{-factor} \Rightarrow molar mass = 75 \times 2 = 150

8. Normality (N) \rightarrow (g eq./L):

> Percentage Composition :

The mass percentage of each constituent element present in any compound is called its percentage composition.

Ex- 01. Calculate the percentage of water of crystallization in washing soda $[Na_2CO_3 \cdot 10H_2O]$ **Ans.** Molecular weight of $Na_2CO_3 \cdot 10H_2O = 46 + 12 + 48 + 180 = 286$ amu.

Molecular weight of 10 molecules of water = $10 \times 18 = 180$ amu

∴ %age of water of crystallisation = $\frac{182}{286}$ × 100 = 62.93%.

02. Calculate which one of the following is a better potash fertiliser (a) Potassium phosphate (b) potassium nitrate **Ans.** (a) **For potassium sulphate** Molecular weight of $K_3PO_4 = 3(39) + 1(31) + 4(16) = 117 + 31 + 64 = 212$

∴ %age of potassium in $K_3PO_4 = \frac{117}{212} \times 100 = 55.18\%$

- (b) For potassium nitrate Molecular weight of KNO₃ = 1(39) + 1(14) + 3(16) = 39 + 14 + 48 = 101 \therefore %age of potassium in KNO₃ = $\frac{39 \times 100}{101} = 38.61\%$
- ∴ Potassium phosphate (K = 55.18%) is a better potash fertiliser than potassium nitrate (K = 38.61%)

Empirical Formula(E.F) & Molecular Formula(M. F):

Note:- For certain compounds the molecular formula and the empirical formula may be same. Like- CO ∴ M. F = E. F If the vapour density of the substance is known, its

Empirical Formula & Molecular Formula: the simplest whole number ratio of various atoms present in a compound present in a molecule of a compound $C_6H_6=6$ (CH) $C_6H_6=6$

Mol. weight = $2 \times \text{Vapour}$ Value of n = 1, 2, 3, 4, 5, 6 etc.

Density

Molecular We

Integer or common factor or multiplying factor

Molecular Weight = n x Empirical formula weight

Example- 01. A chemical compound having C% = 24.27, H% = 4.08 & Cl% = 71.65% and its M.M is 98.96 g then find empirical and molecular formula.

۰	The moreovalar formation									
	Element	% of element	At. wt.	No. of moles = $\frac{\%}{At.wt}$.	Whole no. ratio					
	С	24.27	12	2.02	1					
	Н	4.08	1	4.08	2					
	Cl	71.65	35.5	2.02 (div. by min.)	1					

Hence, Empirical Formula = CH₂Cl

Molecular Formula = $2 \times [CH_2CI] = C_2H_4CI_2$

$$n = \frac{M.F.mass}{E.F.mass} = \frac{98.96}{12+2+35.5} = \frac{98.96}{49} = 2$$

02. A hydrocarbon contains 82.8 % of carbon and has a relative molecular mass of 58. Write (i) its empirical formula

(ii) its molecular formula (iii) its two possible structural formulae.

Element	%age wt. At. wt.		Relative no. of moles	Simple ratio of atoms		
С	82.8	12	82.8 ÷ 12 = 6.9	$6.9 \div 6.9 = 1$ or 2		
Н	17.2	1	17.2 ÷ 1 = 17.2	17.2 ÷ 6.9 = 2.5 or 5		

- \therefore (i) Empirical formula of hydrocarbon = C_2H_5
 - (ii) Empirical formula weight of hydrocarbon = $2 \times 12 + 1 \times 5 = 29$ & Molecular wt. of hydrocarbon = 58
- : Molecular weight = n × Empirical formula weight \Rightarrow 58 = n × 29 \Rightarrow n = 2
 - (iii) Molecular formula of hydrocarbon = $2 \times \text{Empirical formula} = 2 \times C_2H_5 = C_4H_{10}$ Possible structural formulae : n-Butane & Iso-Butane. (Only saturated)

➤ Analytical Chemistry: % determination of element on Organic Compound -

1. % Estimation of C & H: Leibeg's method-

H: Leibeg's method-

$$12g \qquad 44g \qquad 2g \qquad 18g$$

$$C \% = \frac{12}{44} \times \frac{mass\ of\ CO2}{mass\ of\ Compound} \times 100 \qquad H \% = \frac{1\times 2}{18} \times \frac{mass\ of\ H2O}{mass\ of\ Compound} \times 1$$

$$ur - By\ BaSO_4 \qquad (137 + 32 + 64 = 233)$$

2. % Estimation of Sulphur - By BaSO₄ (137 + 32 + 64 = 233)

$$S\% = \frac{1 \times 32}{233} \times \frac{mass\ of\ BaSO4}{mass\ of\ Compound} \times 100$$

3. % Estimation of Phosphorous - by magnesium Pyrophosphate (Mg₂P₂O₇)

$$P\% = \frac{2 \times 31}{222} \times \frac{mass\ of\ Mg2P2O7}{mass\ of\ Compound} \times 100$$

4. % Estimation of Halogen (X - Cl, Br, I) - By AgX : Carius Method -

Cl % =
$$\frac{35.5}{143.5}$$
 x $\frac{mass\ of\ AgCl\ Silvar}{mass\ of\ Compound}$ x 100

- 5. % Estimation of Nitrogen-
- Kjeldahl's Method is Not suitable in -
- (1) Nitrogen containing Ring like- Pyridine, Quinoline etc.
- (2) compound Containing NO₂ (Nitrogen group) &

$$-N = N - (diazo group)$$

B/coz Above Compound do not completely digest with (NH₄)₂SO₄

- Duma's Method
 Estimation by N₂ gas
- This method is suitable for all organic compound (General applicability)

$$^{\circ} N\% = \frac{2 \times 14}{22,400} \frac{\text{Vol. of N}_2 \text{ at STP (cm}^3) \text{ or ml}}{\text{mass of Compound}}$$

- Example The ammonia evolve from the treatment of 0.30g of an organic compound for the estimation of N_2 was passed in 100ml of 0.1M H_2SO_4 . The excess of acid required 20 ml of 0.5 molar NaOH solution for complete neutralisation.
- 6. % Estimation of oxygen:

Estimation of Nitrogen

Anjit Academy

Kjeldahl's Method Estimation through ammonium sulphate

 $((NH_4)_2SO_4)$

This method are suitable for Fertiliser, Drugs, Fast Food Packaging etc.

$$X 100$$
 N% = $\frac{1.4 \times N \times V}{Wt \text{ of Substance}} = \frac{1.4 \times Meq.}{W}$

 $\frac{1.4 \text{ x M}_{\text{eq.}}}{1.4 \text{ s.s.}} = \frac{1.4 \text{ x.s.}}{1.4 \text{ x.s.}}$ 0.30 H_2SO_4 NaOH 0.5 M 0.1 MAnjit Academy 100ml 20ml $N_1 \times V_1$ $N_2 \times V_2$ 0.5 x 1 x 20 0.1 x 2 x 100 = 20 Neutralised

20 -10 7 10

Some Experimental Methods:

> Stoichiometry & Stoichiometric Calculations:

The word 'stoichiometry' is derived from two Greek words—Stoicheion (meaning element) and metron (meaning measure). Stoichiometry, thus deals with the calculation of masses (sometimes volume also) of the reactants and the products involved in a chemical reaction.

Example- How many moles of methane are required to produce 22 g CO2 after combustion?

Sol.
$$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$$
 \therefore $44g CO_2$ react with $= 1$ mole CH_4 \therefore $22 g CO_2$ react with $= \frac{1}{44} \times 22 = 0.5$ mol NOTE: Balancing of any saturated Hydrocaron Tricks : $C_nH_{2n+2} + \frac{3n+1}{2} O_2 \rightarrow n CO_2 + (n+1)H_2O$

■ NOTE: Balancing of any saturated Hydrocaron Tricks:
$$C_nH_{2n+2} + \frac{3n+1}{2}O_2 \rightarrow nCO_2 + (n+1)H_2O_2$$

 \rightarrow * **Dulong Petit's law**: At. Wt x Specific Heat capacity = 6.4

Example : The Specific heat of a metal is 0.16. Its approximate At. wt. would be \therefore At. wt. = 6.4/0.16 = 40

■ * 1 g-ion = 1 mol Example- The charge on one gram ion of
$$Al^{3+}$$
 ion.

: charge of 1 mole of
$$e^- = N_A \times e^-$$
 : Al^{3+} ion = $3 N_A \times e^- = 3 \times 6.022 \times 10^{23} \times 1.6 \times 10^{-19}$ C

Law of Isomorphism: According to Mitscherlich [year 1819].

When two or more compound forms similar type of crystals or able to form mixed crystals, they are known as isomorphs. For Examples: MgSO₄.7H₂O (Epsom salt), ZnSO₄.7H₂O (White vitriol) and FeSO₄.7H₂O (Green Vitriol) are isomorphs of each other as their crystals posses same shape.

- The valency of elements that are similarly placed to that of other elements in their isomorphs are always same.
- In the above Example- Fe, Zn & Mg have same valency [2] & equal ratio of water molecule in each isomorphs.

Diffusion Method: It is based on Graham's Law of Diffusion. ▶

The law states that "under similar conditions of temperature and pressure, the rates of diffusion of gases are inversely proportional to the square roots of their densities (or molecular weights)."

The rate of diffusion (r) of a gas at constant temperature is directly preoperational to its pressure

 $\frac{r_1}{r_2} = \frac{P_2}{P_1} = \sqrt{\frac{M_2}{M_1}}$ $r \propto 1/\sqrt{d}$ at constant temperature $r \propto P$ at constant temperature When molecular mass of a compound is expressed in grams, it is called Gram Molecular mass (GMM) or Gram Molecular weight (GMW).

> Iodometry & iodimetry: These two types of titrations are based on oxidation reduction in analytical chemistry...

- In iodimetry, a species is directly titrated with an iodine solution, but in iodometry a species is titrated with an iodide solution and then the released iodine is titrated with thiosulphate.
- Therefore, iodimetry is a direct method and iodometry is an indirect method.
- Iodometry can be used to quantify oxidizing agents, whereas iodimetry can be used to quantify reducing agents.

Iodimetry: This titration involves free iodine. Such direct estimation of iodine is called iodimetry.

This involves the titration of iodine solution with known sodium thiosulphate solution, whose normality is N. Let the volume of sodium thiosulphate used be V litre.

$$I_2 + 2Na_2S_2O_3 \rightarrow 2NaI + Na_2S_4O_6$$
 $I_2 + 2e^- \rightarrow 2I^-$ (reduction) & $2I_- \rightarrow I2 + 2e^-$ (oxidation) the n-factor for the hypo solution is 1, whereas, when I write the balanced redox reaction, that is, $2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2e^-$ You can see that n-factor should be 2.

Equivalents of I_2 = Equivalents of $Na_2S_2O_3$ used = $N \times Vating For$

∴ Moles of
$$I_2 = \frac{N \times V}{2}$$
 & Mass of free I_2 in the solution = $\left[\frac{N \times V}{2} \times 254\right]_g$

 $H_2SO_3 + I_2 \rightarrow SO_4^{2-} + 2I^- + 4H^+$ $2S_2O_3^{2-} + I_2 \rightarrow S_4O_4^{2-} + 2I^-$ **Example-** $H_2S + I_2 \rightarrow 2H^+ + S + 2I^-$ Iodometry: is an indirect method of estimation of iodine. An oxidizing agent is made to react with excess of solid KI. The oxidizing agent oxidizes I- to I2.

Example-
$$Cr_2O_2^{2-} + 6I^- + 16 H^+ \rightarrow 2 Cr^{3+} + 3I_2 + 7H_2O$$
 $2Cu^{2+} + 4I^- \rightarrow 2CuI + I_2$

Equivalent mass OR Chemical Equivalent:

It is defined as the number of parts by mass of the substances which combine/displace directly 1.008 parts by mass of Hydrogen **OR** 8 parts by mass of Oxygen OR 35.5 parts by mass of Chlorine.

Following method is used for determination of Eq. Mass:

1. Oxide formation Method: A known mass of the element is changed into oxide directly or indirectly.

Mass of Oxygen = mass of **oxide** - mass of element \therefore Eq. mass of element = $\frac{mass\ of\ element}{f}$ x 8

2. Chloride formation method:

mass of Chlorine = mass of **chloride** - mass of element \therefore Eq. mass of element = $\frac{mass\ of\ element}{mass\ of\ ehlorine}$ x 35.5

3. Hydrogen Displacement method: This method is used for those element which can evolve hydrogen from acids i.e. Active Metals. The mass of librated hydrogen is determined using density of hydrogen (0.00009 at NTP).

4. Metal to metal displacement method: A more active metal can displace less active metal from its salt solution. if E1 & E2 are the Eq. masses of two elements and m1 & m2 their respective masses then $-\frac{m1}{m2} = \frac{E1}{E2}$

➤Percentage yield: (i) It is the ratio of actual yield of the reaction to the theoretical yield multiplied by 100.

(ii) % yield =
$$\frac{Actual\ Yield\ or\ Actual\ amount\ of\ product}{Theoretical\ yield\ or\ Calculated\ amount\ of\ product} \times 100$$

Example- In the reaction 2 NH₃(g) + 5 F₂ \rightarrow N₂F₄ + 6HF ; 3.56 g N₂F₄ is obtained by mixing 2g NH₃ & 8 g F₂. The % yield of the production is-

Sol. 2 NH₃(g) + 5 F₂
$$\rightarrow$$
 N₂F₄ + 6HF
34 g 190 g 104g \therefore amount of N₂F₄ formed by 2 g NH₃ = $\frac{2}{34} \times 104 = 6.12$ g
% yield = $\frac{3.56}{4.38} \times 100 = 81.28$ % \therefore amount of N₂F₄ formed by 8 g F₂ = $\frac{8}{190} \times 104 = 4.38$ g [It is L .R so, Calculated amount]

▶Problems related with Mixture:

Ex. 4 gram of a mixture of CaCO₃ and Sand (SiO₂) is treated with an excess of HCl and 0.88 gm of CO₂ is produced. What is the percentage of CaCO₃ in the original mixture?

Ans.
$$CaCO_3 + 2HCI \rightarrow CaCl_2 + H_2O + CO_2$$
 & $SiO_2 + HCI \rightarrow No \ reaction$
Let, $CaCO_3 = x \ gm$ then, 100 gm CaCO3 gives $\rightarrow 44 \ gm \ CO_2$
 $x \ gmCaCO_3 \ gives \rightarrow 0.88 \ gmCO_2 \Rightarrow \frac{100}{x} = \frac{44}{0.88} \Rightarrow x = 2 \ gram$ $\therefore \% \ CaCO_3 = \frac{2}{4} \times 100 = 50\%$

Limiting Reagent [L.R]: In which, The reactant gets consumed first or limits; the amount of product is formed in the reaction is known as limiting reagent. The reactant which is not consumed completely in the reaction is called excess reactant.

- How to find L.R :-1. Write & balance Chemical equation.
 - 2. Convert the amount of all species to moles = mass/M.Mass OR Use Y-map.
 - **3.** Divide the no. of moles by stoichiometric Coeff.
 - 4. Whose value come smallest hence, It is L.R.
- Example- 10g of hydrogen & 64g O₂ were filled in a steel vessel and exploded amount of water produced in this reaction

will be-
$$H_2(g) + 1/2 O_2(g) \rightarrow H_2O(I)$$

Initial mole: $10/2 = 5 \text{ mol}$ $64/32 = 2 \text{ mol}$
 n/S toci. coeff: $5/1 = 5 \text{ mol}$ $2/0.5 = 4 \text{ mol}$ (min. value so L.R)
Final mole: $5-4 = 1 \text{ mol}$ $4-4 = 0$ $1 \times 4 = 4 \text{ mol}$ (Ans.)

POAC***: Power of Atom Conservation: Only Used relation no. of moles (Y-map) of atom.

- In this Method atom is always conserved i.e. Mass of reactant = mass of Product.
- This is follow the law of conservation of mass.
- Do not required writing the complete reaction or balancing.

Example - 01. Find out moles of CO2 formed combustion of 60 moles of Butane?

 $C_4H_{10} + O_2 \rightarrow 4$ $C_{02} + H_2O$ 'C' is conserved so, $4 \times n_{C_4H_{10}} = 1 \times n_{C_{02}} \implies 4 \times 60 = n_{C_{02}}$

02. Calculate the amount of lime that can be produced by heating 100g of 90% pure substance.

sol. :
$$CaCO_3 \rightarrow CaO + CO_2$$
 apply POAC, Ca is Consumed, : $1 \times n_{CaCO_3} = 1 \times n_{CaO}$
 $\Rightarrow \frac{wt.of\ CaCO_3}{M.M\ CaCO_3} = \frac{wt.of\ CaO}{M.M\ of\ CaO} \Rightarrow \frac{\frac{90}{100} \times 100}{100} = \frac{x}{56} \Rightarrow x = 50.4\ g$: $no.\ of\ moles\ CaO = \frac{50.4}{56} = 0.9\ mol$

Equivalence Method***:

Law of Equivalence: 'Always 1 eq. of a substance reacts with 1eq. of another substances & equivalent of each product is formed.'

	1.	Balancing is not required	Balancing is required.	m.ec
	2.	No need of formation of product	Required formation of product	m.eq. $= 10^{-1}$
	3.	No. of equivalants = wt/Eq. wt		
_	T4	wt v 103 - wt v 1	WE VIOS WE VIOS V	V N. W.C.

No. of m Eq. =
$$\frac{wt}{eq.\ wt.} \times 10^3 = \frac{wt}{M.\ wt.} \times V.F \times 10^3 = \frac{wt}{M.\ wt.} \times V.F \times 10^3 \times \frac{V}{V} = N \times V \ (ml) = (M \times V.F) \times V \ (ml)$$

$$= no.\ of\ millimoles \times V.F = (no.\ of\ moles \times 1000) \times V.F = \frac{no.\ of\ particles}{N_A} \times 1000 \times V.F$$

$$= \frac{N_A}{N_A} \times \frac{N_A}{N_A}$$

■ NOTE: Actually \rightarrow mEq. \xrightarrow{means} is $1/1000^{th}$ of Chemical equivalent (wt/Eq.wt) \xrightarrow{so} wt/Eq.wt x 10^3 Ex.- 01. How many gm of K₂Cr₂O₇ is present in 1L of its N/10 solution in acidic medium?

Sol.
$$K_2Cr_2O_7 \xrightarrow{[H^+]} Cr^{3+}$$
 so, $n_f = 3 \times 2 = 6$ \therefore no. of eq. of $K_2Cr_2O_7 = no.$ of eq. of solⁿ
$$\frac{wt}{eq. \ wt.} = N \times V(L) \implies \frac{wt}{M. \ wt./n_f} = N \times V(L) \implies \frac{wt}{294/6} = \frac{1}{10} \times 1 \implies wt = 4.9 \ gm$$

Sharp your Brain:

- 1. Eq. mass of element = $\frac{Atomic\ Mass}{nf}$ ⇒ At. Mass = Eq. mass x Valancy
- 2. Eq. mass of substance undergoing disproportionation Redox Reaction-

3. Strength of H₂O₂: Volume strength of H₂O₂ is expressed in terms of the vol. of Oxygen at NTP.

Vol. strength = $5.6 \times N$

'OR' = **11.2 M**

% strength = $\frac{17}{56}$ x Vol. Strength

Strength = N x Eq. mass

Molar mass = Eq. mass x n_f (n-factor)

6. N = M x n-factor
$$: N = \frac{g.eq.}{V(L)} = \frac{\frac{g}{Eq.mass}}{V(L)} = \frac{w}{\frac{M.M}{n-factor} \times V(L)} = \frac{w}{M.M \times V(L)} \times \text{n-factor} = M \times \text{n-factor}$$

7. If given density d (g/ml) & w/w % (mass%): $M = \frac{\frac{w}{w}\% \times d \times 10}{MM \text{ of solute}}$

$$M = \frac{\frac{w}{w}\% \times d \times 10}{M.M \text{ of solut}}$$

8. If says w/v % of Solution -

$$M = \frac{\frac{w}{V}\% \times 10}{M.M \ of \ solute}$$

$$N = \frac{\frac{w}{V}\% \times 10}{Eq. \ mass \ of \ solute}$$

9. If given specific gravity & w/w % of solute -

$$\therefore \text{ specific gravity} = \frac{\text{density of any substance}}{\text{density of water}(4^{\circ}C)}$$

10. Relation **b/w N & M**: Normality of Solution $N = M \times \frac{molar\ mass}{r}$

11. Relation **b/w m & solubility** : $\mathbf{m} = \frac{solubility \times 10}{1000}$ 11. Relation **b/w m & solution.** ... $M.M ext{ of solute}$ 12. Relation **b/w m &** mole fraction of solute $X_B \implies X_B = \frac{m}{m + 55.5}$ $\therefore 1000 \times M$

13. molality (**m**) in terms of density(**d**) & Molarity(**M**): $\mathbf{m} = \frac{1000 \times d}{1000 \times d - M \times MA}$

14. molality (m) in terms of mole fraction & molecular mass:

where, $M_A \to M$. M of solvent $M_B \to M$. M of solute $X_B \to mole$ fraction of solute $X_A \to mole$ fraction of solvent

15. No. of moles (n) = M x V(L) = $\frac{M \times V(ml)}{100}$

16. If an element exists in Two Isotopes having atomic masses x & y with ratio p: q then find Average mass of Av. At. mass = $\frac{p \cdot x + q \cdot y}{n+q}$

Solved Examples:

Q.1 Naturally occurring chlorine is 75.53% Cl³⁵ which has an atomic mass of 34.969 amu and 24.47% Cl³⁷ which has a mass of 36.966 amu. Calculate the average atomic mass of chlorine-

Sol. Av. at. mass = $\frac{\% \text{ of } 1^{\text{st}} \text{ Isotopes} \times \text{its At.Mass}}{100} + \frac{\% \text{ os } 2^{\text{nd}} \text{ Isotopes} \times \text{its At.Mass}}{100} = \frac{73.53 \times 34.969 + 24.47 \times 36.96}{100} = 35.5 \text{ amu}$

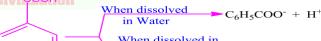
Q.2 Appropriate no. of significant digits $\frac{6.02 \times 10^{23} \times 4.00}{4.0 \times 10^{23}} = 6.02 \times 10^{23} \div 6.0 \times 10^{3}$ Ans. (Min. S.F is Two)

Q.3 25 ml of solution of Ba(OH)₂ on titration with 0.1 M molar solution H₃PO₂ gave 35 ml. The molarity of Ba(OH)₂ solution was?

Sol. For Ba(OH)₂ [N₁ x V₁] = for H₃PO₂ [N₂ x V₂] \Longrightarrow (M₁ x a) x V₁ = (M₂ x b) x V₂ \Longrightarrow M₁ x 2 x 25 = 0.1x 1 x 35 \Longrightarrow M₁ = 0.07 M

Q.4 What is the Normality of solution that contain 50g of H₂SO₄ dissolved in 15 L.

Sol. N = M x n-factor \Rightarrow N = $\frac{50/98}{15}$ x 2 = 0.068 N


Q.5 A 5.2 molal aqueous solution of methyl alcohol CH₃OH is supplied, What is the mole fraction of methyl alcohol in the solution?

Sol. $x = \frac{m}{m+55.5} = \frac{5.2}{5.2+55.5} = 0.085$

Q.6 2.44 g of benzoic acid is dissolved in benzene to form 500 ml solution. Then find formality & Molarity. Sol. $M = \frac{w}{M.M_{acctual} \times V(L)} = \frac{2.44}{122 \times 500} = 0.04 \, mol/L$ When dissolved in Wolfer

$$\therefore f = i \times M = 0.5 \times 0.04 = 0.02 \frac{mol}{L}$$

$$\because i = \frac{M.M_{theor}}{M.M_{observe}} = \frac{122}{244} = 0.5$$

 $1 \times n_{KBr} + 1 \times n_{NaBr} = 1 \times n_{AqBr}$

When dissolved in Non-Electrolyte Solⁿ

Q.7 A mixture of KBr and NaBr weighing 0.580g was treated with aqueous Ag⁺ ion & all Br ion was recorded as 0.970 g of pure AgBr. What was the fraction by weight of KBr in Sample.

Sol. (KBr + NaBr) + Ag $^+$ \rightarrow AgBr

Now
$$1 \times \frac{x}{1} + 1 \times \frac{0.560 - x}{1} = 1 \times \frac{0.970}{1} \implies x = 0.1332$$

Let, x g
$$(0.560 - x)$$
g 0.097 g
Now, $1 \times \frac{x}{119} + 1 \times \frac{0.560 - x}{103} = 1 \times \frac{0.970}{188} \implies x = 0.1332$ g

so, fraction of KBr in mixture = 0.1332/0.560 = 0.237

Q.8 How many moles and grams of NaCl are present in 250ml of a 0.5 M NaCl solution?

Sol. : $no. \ of \ moles = \frac{M \times V(ml)}{1000} = \frac{0.5 \times 250}{1000} = 0.125$: $mass \ of \ NaCl = no. \ of \ moles \times mol. \ wt. = 58.5 \times 0.125 = 7.32 \ g$

Q.9 Density of a 2.05 M solution of acetic acid in water is 1.02 g/ml. The molality of the solution is-

Sol.
$$: m = \frac{M \times 1000}{1000 \times d - M \times M_B} = \frac{2.05 \times 1000}{1000 \times 1.02 - 2.05 \times 60} = 2.28 \ mol/kg$$

Q.10 A gaseous compound is composed of 85.7% by mass C & 14.3% by mass hydrogen. It's density is 2.28 g/L at 300K & 1 atm pr. Determine molecular formula of compound

Sol. :
$$d = \frac{PM}{RT} \implies M = \frac{dRT}{P} = \frac{2.28 \times 0.0821 \times 300}{1} = 56.15 \ g/mol \ \& \ \textbf{E.F} = \frac{85.7}{12} : \frac{14.3}{1} = 7.14 : 14.3 = 1 : 2 \text{ so, E.F is } \textbf{CH}_2$$

Now, $n = \frac{mol.mass}{E.F. mass} = \frac{56.15}{(12+2)} = 4$ so, Mol. Formula = 4(CH₂) = $\textbf{C}_4\textbf{H}_8$

Q.11 1g of Mg is burnt with 0.56g O2 in closed vessel. Which reactant is left in excess & how much?

0.0416/1 = 0.0416 mol 0.0175/0.5 = 0.035 mol [min. value so, L.R] n/stoi. coeff. Final moles (0.0416-0.035) = 0.0066 (0.035-0.035) = 0 mol $1 \times 0.035 = 0.035 \text{ mol}$

 \therefore mass of Mg left in excess = 0.0066 \times 24 = 0.16 g

Q.12 Calculate molality of 1L solution of 93% H₂SO₄ (w/v) . The density of the solution is 1.84 g/ml.

Sol. mass of solute, in 1000ml of 93% $H_2SO_4 = 93$ g

: in 1000ml of 93%
$$H_2SO_4 = \frac{93}{100} \times 1000 = 930 g$$

Now, Mass of Solvent (H_2O) in 1000ml of solution = mass of Solution (d x v) - Mass of solute in 1000ml

= 1000 x 1.84 - 930 = 910 g
$$\therefore m = \frac{930/98}{0.910}$$
 = 10.43 m

Q.13 The density of 3M sodium-thiosulphate solution each 1.25g/ml, Calculate-

(i) % by wt. of $Na_2S_2O_3$ (ii) mole fraction of $Na_2S_2O_3$

(iii) Molality of Na⁺ & S₂O₃²⁻

sol. Given data, d = 1.25g/ml, M = 3 mol/L means, mol = 3 (solute) : V = 1000ml = 1L (this is given)

(i)
$$M = \frac{\%\frac{w}{w} \times d \times 10}{M.M} \implies w/w\% = \frac{M \times M.M}{d \times 10} = \frac{3 \times 158}{1.25 \times 10} = 37.92$$

(ii) $x_{Na2S2O3} = \frac{n_{Na2S2O3}}{n_{Na2S2O3+n_{H2O}}} = \frac{3}{3+43.11} = 0.0661$

(ii)
$$x_{Na2S2O3} = \frac{n_{Na2S2O3}}{n_{Na2S2O3} + n_{Na2S2O3}} = \frac{3}{3 + 43.11} = 0.0661$$

 \therefore mass of solvent $(H_2O) = mass\ of\ solution\ (d \times v) - mass\ of\ solute = 1.25 \times 1000 - 3 \times 158 = 776\ g$

$$\therefore moles of solvent (H_2O) = \frac{776}{18} = 43.11$$

:
$$mass \ of \ solvent \ (H_2O) = mass \ of \ solution \ (u \times v) = mass \ of \ solution = 1.23 \times 1000 = 3 \times 130 = 770 \ g$$

: $moles \ of \ solvent \ (H_2O) = \frac{776}{18} = 43.11$
(iii) $Na_2S_2O_3 \rightarrow 2Na + + S_2O_3^2 : m = \frac{3 \times 1000}{776} = 3.86 \ m$: $Na^+ = 2 \times 3.86 \ m$ & $S_2O_3^- = 1 \times 3.86 \ m$

Q.14 How many m.eq. of KCl are in a 50 ml does of 12% (w/v) KCl elixir? Sol. m.eq. = N x V(ml) =
$$\frac{(\%w/v) \times 10}{eq.\ wt.} \times V(ml) = \frac{12 \times 10}{75.5/1} \times 50 = 80 \ m \ mol$$

Q.15. The strength of 10 volume of H₂O₂ solution is-
Sol. :
$$M = \frac{Vol. strength}{11.2} \Rightarrow \frac{mass}{M. \ M \times V(L)} = \frac{Vol. strength}{11.2} \Rightarrow \frac{Strength}{M. \ M} = \frac{Vol. strength}{11.2} \Rightarrow Strength = \frac{Vol. strength}{11.2} \times M.M$$

$$= \frac{10}{11.2} \times 34 = 30.359 \ g/L$$

Q.16 In a victor Meyer determination of the relative molecular mass of benzene, the heating vessel was maintained at 120°C. A mass of 0.1528 gm of benzene was used and the volume of displaced air collected over water at 15°C, was 48 cm³. The barometric pressure was 743 mm mercury. Calculate the relative molecular mass of benzene. The vapour pressure of water at 15°C = 13 mm Hg.

Sol. Actual pressure of displaced air =
$$743 - 13 = 730 \text{ mm} = \frac{730}{760} \text{ atm}$$
 $\therefore 15 \text{ °C} = 15 + 273 = 288 \text{ K}$

$$: 15 \, ^{\circ}\text{C} = 15 + 273 = 288 \text{ K}$$

$$V = 48 \text{ cm}^3 = 48 \times 10^{-3} \text{ lit.}$$
 W = 0.1528

$$V = 48 \text{ cm}^3 = 48 \times 10^{-3} \text{ lit.} \qquad W = 0.1528 \qquad \therefore M = \frac{WRT}{PV} = \frac{0.1528 \times 0.82 \times 288}{\frac{730}{760} \times 0.048} = 78.26$$

Hence, the molecular weight of benzene = 78.26

- Q.17 There are 10 gm of mixture of NaCl and NaBr. If the amount of sodium is 25% of the weight of total mixture, calculate the amount of NaCl and NaBr present in the mixture. (Given, atomic weights of Na, Cl and Br are 23, 35.5 and 80 respectively).
- **Sol.** Let in the given mixture NaCl present = x gm. \therefore in the given mixture NaBr present = (10 - x) gm. The formula weight of NaCl = 23 + 35.5 = 58.5 and formula weight of NaBr = 23 + 80 = 103

∴ the total amount of Na present in the mixture
$$=\frac{23}{58.5}x+\frac{23}{103}(10-x)=0.25\times10=2.5;$$

on solving x = 1.5734 and 10 - x = 8.4266

... the amount of NaCl & NaBr present in the given mixture are 1.5734 gm and 8.4266 gm respectively.

Old IIT-JEE Objective type questions

- At 100°C and 1 atm, if the density of liquid water is 1.0 g cm⁻³ and that of water vapor is 0.0006 g cm⁻³, then the volume occupied by water molecules in 1 litre of steam at that temperature is -
- (A) 6 cm^3 (B) 60 cm^3 (C) 0.6 cm^3 (D) 0.06 cm^3 How many moles of electron weight one kilogram? Q.2

(A)
$$6.023 \times 10^{23}$$
 (B) $\frac{}{9}$

(B)
$$\frac{1}{9.108} \times 10^{31}$$

(C)
$$\frac{6.023}{9.108} \times 10^{54}$$

(C)
$$\frac{6.023}{9.108} \times 10^{54}$$
 (D) $\frac{1}{9.108 \times 6.023} \times 10^{8}$

Q.3 A 2L solution (X) contain 0.02 mole of $[Co(NH_3)_5SO_4]Br$ and 0.02 mol [Co(NH₃)₅ Br] SO₄. 1 L of this solution is - $X + AgNO_3$ (excess) $\rightarrow Y \mod AgBr \downarrow$

 $X + BaCl_2$ (excess) $\rightarrow Z$ mol BaSO₄ \downarrow

Values of Y and Z are -

(A) 0.01, 0.02

(B) 0.02, 0.02

(C) 0.02, 0.01

(D) 0.01, 0.01

- Q.4 In which of the following number of atoms are maximum?
 - (A) 24 gms C

(B) 27 gms of Al

(C) 56 gms of Fe

(D) 108 gms of Ag

(D) 56.05

Q.5 Given that the abundances of isotopes ⁵⁴Fe, ⁵⁶Fe and ⁵⁷Fe are 5%, 90% and 5%, respectively, the atomic mass of Fe is -

(A) 55.85 (B) 55.95 (C) 55.75 Only single correct answer questions

Q.1	The atomic masses of two elements A and B are 20 and 40 respectively, if x gm of A contains y atoms, how many atoms are present in 2x gm of B?	Q.16	(C) 0.8 lift	lume o						ng
Q.2	(A) y (B) 2y (C) $\frac{y}{2}$ (D) $\frac{y}{4}$ If mole percentage of C–12 and C–14 in nature is 98% and 2% respectively, then the number of C–14 atoms in	Q.17	of Fe ³⁺ (A) 49.85 The mole	5 mL (E e fractio	on of a ${\mathfrak g}$	given sa				
	12 g of carbon is - (A) 1.2×10^{22} (B) 3.01×10^{22}	Q.18	(A) 0.32 1 mol of	N ₂ an	d 4 mol	_	are allo		react ir	
Q.3	(C) 5.88×10^{23} (D) 6.02×10^{23} Total number of atoms of all elements present in 1 mole of ammonium dichromate is ?		vessel a solution the rema	require	ed 1 m	ol of HO	Cl. Mol	fraction	of H ₂	
Q.4	(A) 14 (B) 19 (C) 6×10^{23} (D) 114×10^{23} 25 grams of oleum contains 30% free SO ₃ . Strength of oleum is -		(A) $\frac{1}{6}$	(E	3) $\frac{5}{6}$	(C)	$\frac{1}{3}$	(D) No	one	
Q.5	(A) 130% (B) 106.75% (C) 115% (D) 110 25 gram of A sample of oleum is labelled as 110%. The amount of H_2O which should be added to this sample to get $50\% H_2SO_4(w/w)$ is -(assuming d of $H_2O = 1$ g/ml) (A) 25 gram (B) 20 gram (C) 30 gram (D) 27.5 gram		Calculate mL of a ions as i (A) 27.92 0.2 mole	solution n a solu 2 g (B e of HCl	n having ition of) 14.50 and 0.1	g the sai KCl of c g (C) mole o	me cond oncenti 22.52 g f bariur	centrati ration 8 (D) 1 n chlori	on of Cl 0 g/L 1.46 g de were	-
Q.6	The number of atoms contained in 11.2 L of SO_2 at N.T.P. are - (A) $3/2 \times 6.02 \times 10^{23}$ (B) $2 \times 6.02 \times 10^{23}$		molarity (A) 0.06	of the	CI [—] ions					
Q.7	(C) 6.02×10^{23} (D) $4 \times 6.02 \times 10^{23}$ The vapour density of gas A is four times that of B. If	Q.21	A sample What is	the vol	ume of	the aci				
α.,	molecular mass of B is M, then molecular mass of A is -	2 22	make 1 l (A) 16 m	L (E	3) 10 ml	 L (C)				
Q.8	On analysis, a certain compound was found to contain	Q.22	A sample 200 mL	of a	0.1-N	_				
	iodine and oxygen in the ratio of 254 gm of iodine (at. mass 127) and 80 gm oxygen (at. mass 16). What is the formula of the compound - (A) IO (B) I_2O (C) I_5O_3 (D) I_2O_5	Q.23	solution (A) acidio 125 mL o HCl (w/V	c (B of 10%) strong NaOH (w/V) is	added 1	to 125 ı		
Q.9	The hydrated salt Na ₂ SO ₄ .nH ₂ O, undergoes 55% loss in weight on heating and becomes anhydrous. The value of n will be	Q.24	(A) alkali Equal vo 0.75 M solution	lumes of NaC	of 0.50	M of H	Cl, 0.25	M of	NaOH a	nd
Q.10	(A) 5 (B) 3 (C) 7 (D) 10 The mass of oxygen that would be required to produce enough CO, which completely reduces 1.6 kg Fe ₂ O ₃	Q.25	(A) 0.75 How ma 1.50-M (M (B ny gran		pper w		placed		f a
Q.11	(at. mass Fe = 56) is - $(Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2)$ (A) 240 gm (B) 480 gm (C) 720 gm (D) 960 gm 12g of Mg (atm. mass 24) will react completely with acid to give - (A) One mol of H ₂ (B) 1/2 mol of H ₂	Q.26	with 27.4 (A) 190 g In which solution (A) Mola	0 g of A g (B) n mode remain	1? (3Cu 95.25 { of exp s indep	uSO ₄ + 2 g (C) 4 ression, endent	Al \rightarrow Al 8 g, the coordinate of temptons	2(SO ₄) ₃ (D) oncentra erature	+ 3Cu) 10 g ation of	
Q.12	(C) 2/3 mol of $\rm O_2$ (D) Both 1/2 mol of $\rm H_2$ and 1/2 mol of $\rm O_2$ If one mole of ethanol ($\rm C_2H_5OH$) completely burns to	Q.27	The large (A) 36 g (C) 46 g (est num of wate	ber of i	molecul (B) 28		- 2	·	,
	carbon dioxide and water, the weight of carbon dioxide formed is about - $(C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O)$		आपका परि		*•	ः ः पर्याटशीच	- -		aar ≈	
Q.13	(A) 22g (B) 45g (C) 66g (D) 88g Calculate the weight of lime (CaO) obtained by heating 200 kg of 95% pure lime stone (CaCO ₃).	** **	Old	IIT-JE	E Objec	⊹ ⊹ tive typ	e questi	ons	Mai 🛎	
Q.14	(A) 104.4 kg (B) 105.4 kg (C) 212.8 kg (D) 106.4 kg The mass of 70% H ₂ SO ₄ required for neutralisation of 1	1-A	Only sin	2-D n <mark>gle co</mark> 3-D	3-1 rrect ar 4-B	-		5-B e <mark>stions</mark> 7-B	: 8-D	1
	mol of NaOH	9-D	10-B	11-B	12-D	13-D	14-C	15-C	16-B	
	(A) 49 gm (B) 98 gm (C) 70 gm (D) 34.3 gm	17-R		19-Δ	20-D	21-C	22-D	23-C	24-R	

*** ***With Best Wishes*** 16-B 24-B

25-B

26-D

27-A

 $\textbf{Q.15} \quad \textbf{12 litre of} \ \ \textbf{H}_{2} \ \ \textbf{and} \ \ \textbf{11.2 litre of} \ \ \textbf{Cl}_{2} \ \ \textbf{are mixed and}$

(A) 24 litre of HCl

exploded. The composition by volume of mixture is

(B) 0.8 litre Cl₂ and 20.8 lit HCl